В статье дан обзор современного состояния технологии информационного 3D-проектирования в России. Кроме того, описаны принципы и подходы к созданию единой информационной среды проектирования по базе SmartPlant Enterprise (SPE), которые получили практическую апробацию при организации проектного подразделения компании «АЭС-Буран». Эффективность предложенного подхода доказана результатом работы компании, которая с момента старта проекта в 2011 году приобрела квалификацию и компетенции, позволяющие ей конкурировать не только с российскими, но и с ведущими зарубежными компаниями.
Рынок информационного моделирования в России, несмотря на 15-летнюю историю, находится в стадии начального развития.
После длительного периода застоя в части проектирования и строительства масштабных объектов энергогенерации в начале 2000-х годов крупные проектные компании начали развивать у себя системы трехмерного проектирования и 3D-моделирования. Их действия опережали требования рынка в части формирования 3D-модели как продукта, но являлись потребностью самого проектного бизнеса для оптимизации внутренних бизнес-процессов в целях повышения эффективности проектных ресурсов для выполнения, в частности, «Энергетической стратегии России на период до 2030 года» и «Программы реформирования электроэнергетики РАО “ЕЭС-России”». Участникам процесса проектирования было понятно, что, используя старый инструментарий и существующие бизнес-процессы, они не смогут выполнить поставленные задачи и реализовать планируемый объем инвестиций в энергетику.
Для большинства участников попытка внедрения новых технологий осталась нереализованной и закончилась выполнением «условного» пилотного проекта с последующим затяжным процессом их неэффективной поддержки. Это было вызвано следующими причинами:
Однако сегодня ситуация меняется: все чаще одним из предъявляемых требований к проектной организации от заказчика является наличие либо информационной 3D-модели, либо системы проектирования на основе 3D-технологий. Кроме того, технические регуляторы и контролирующие организации на всех уровнях активно обсуждают вопрос об обязательном наличии информационной трехмерной модели у конечного потребителя этого продукта — эксплуатирующей организации. Особенно актуален вопрос использования современных технологий проектирования в наукоемких отраслях, таких как нефтехимия и атомная электроэнергетика.
Таким образом, технический прогресс и развитая нормативно правовая база в условиях растущего спроса на продукцию формируют благоприятную среду для нового, более интенсивного витка развития информационных технологий в современном проектировании. Рассмотренные нами причины и трудности, связанные с внедрением и развитием современных информационных технологий в крупных проектных организациях и институтах, остаются актуальными и сейчас, что приводит к следующей индикативной оценке:
Возможны два варианта выхода из сложившейся ситуации:
В связи с этим рассмотрим первый вариант, а в качестве примера его успешной реализации приведем StartUp современного проектного офиса компании «АЭС-Буран» на базе комплексной технологии SPE.
Первым элементом, определяющим развитие проектного сектора, является выбор технологии проектирования и поддерживающего ее программного обеспечения. Разработанная корпорацией Intergraph технология под общим названием SmartPlantEnterprise обеспечивает структуризацию и интеграцию разнородных инженерных данных в единое информационное пространство предприятия. Это позволяет реализовать эффективный механизм доступа для всех звеньев проектного, строительного, эксплуатирующего и управленческого персонала к управлению промышленным объектом через центральное хранилище данных, содержащее все необходимые инженерные данные и документацию для планирования, учета, контроля и анализа технических и управленческих решений на всех стадиях жизненного цикла в полном соответствии с положениями ISO 15926 и ISO 10303. Данная технология обеспечивает (рис. 2):
Однако процесс внедрения данной технологии остается весьма дорогостоящим. Поэтому на самых ранних этапах становления проектного сектора для применения процессно-ориентированного управления компания должна иметь ясное представление, какие именно бизнес-процессы у нее существуют, как они протекают и каким образом оценивать их эффективность. Кроме того, необходимо четко определить объект автоматизации/интеллектуализации, что позволит правильно определить стратегию информационного развития и составить инвестиционный план закупки аппаратного и программного обеспечения. На основе полученного опыта внедрения программных продуктов линейки Intergraph предлагается следующая градация:
Для каждого этапа, в соответствии с его задачей, определен набор средств информационной поддержки (табл. 1).
Таблица 1. Структура соответствия этапов внедрения и компонентов SPE
Правильно спланированное поэтапное внедрение крупной информационной системы позволяет существенно оптимизировать затратную часть компании и, таким образом, принимать правильные инвестиционные решения.
Следующим элементом, определяющим качество и успешность внедрения и использования современных проектных технологий, является четкая задокументированная методология. В компании должны быть формализованы процессы, установлены показатели их эффективности, а также определены процедуры управления процессами. Показатели эффективности (результативности) процесса — это количественные и качественные параметры процесса, характеризующие, как правило, взаимоотношение между достигнутым результатом и использованными ресурсами.
Это означает наличие двух видов деятельности по управлению процессами:
Как любая управленческая деятельность, эти два вида работ могут быть рассмотрены с точки зрения замкнутого управленческого цикла, который можно представить, например, так:
Этот цикл реализуется как проектным образом (чаще всего на текущий момент), так и процессным (так называемый цикл ContinuousProcessImprovement, CPI). То есть компания может иметь в числе прочих процессов специальный процесс (постоянную деятельность, протекающую по указанному выше циклу), целью которого является усовершенствование процессов компании. Либо она может время от времени пересматривать часть своих процессов, не удовлетворяющих современным требованиям, каждый раз начиная внутренний проект по совершенствованию процессов компании.
Следующим важным элементом, на который стоит обратить внимание, является номенклатурная/элементная база данных. Номенклатурная база данных представляет собой общий сбор информации об элементах трубопровода и трубопроводной арматуры. В нее входит набор графических 3D-элементов, построенных в соответствии со стандартом их производства и обладающих необходимым набором атрибутивных данных, например,для трубопровода: материал изготовления, толщина стенки и т.д. Очевидно, что без актуального, удовлетворяющего действующим нормативным требованиям набора элементов проектирования само проектирование становится не невозможным. Программный комплекс SmartPlant 3D в базовой поставке включает следующий набор баз данных элементов:
Однако все базы данных либо не соответствуют российским стандартам, либо имеют слишком общее назначение и не обладают необходимыми атрибутами. Отсутствие у Intergraph полного и актуального набора баз данных объясняется следующими причинами:
Учитывая первые два пункта, создавать набор баз данных в глобальном (мировом) масштабе крайне сложно. В связи с этим каждый пользователь программных средств Intergraph должен самостоятельно разработать, купить или заказать разработку собственной базы данных элементов трубопровода и арматуры в соответствии с той проектной областью, в которой он работает. Опираясь на имеющийся опыт, можно отметить, что для компании, находящейся на стадии StartUp, наиболее эффективным является способ развития собственных компетенций — обучение методике и разработка базы данных самостоятельно, поскольку в дальнейшем, при развитии проекта или открытии нового, может возникнуть потребность обновления элементной базы. В качестве примера в табл. 2 приведен перечень стандартов, в соответствии с которым разработаны все элементы трубопроводов и арматуры и ведется проектирование АЭС с реактором ВВЭР.
Таблица 2. Общий перечень стандартов, необходимый для создания баз данных для проектирования АЭС
На начальной стадии проектирования информация из элементной БД поступает в БД системы проектирования 2D-схем. В процессе проектирования 2D-схем элементам и системам присваиваются коды KKS, которые заносятся в данную БД. Таким образом, создается база данных элементов проекта, которая оформляется в виде отдельного файла формата MicrosoftOfficeExcel и наглядно представляет все внесенные данные по одному элементу проекта или группе элементов. Еще раз отметим, что постоянная актуализация элементной базы является непрерывным процессом, который поддерживается составом инженеров-технологов и обеспечивается службой информационных систем.
На основе 2D-схем реализуется трехмерная модель блока. При этом в БД трехмерной модели должны быть сформированы трехмерные отображения элементов по номенклатурным номерам. В соответствии с номенклатурными номерами элементной БД в базе данных трехмерной модели активируются соответствующие элементы (рис. 3 и 4).
Коды KKS для этих элементов берутся из базы данных 2D-схем. При построении трехмерной модели определяются координаты оборудования, которые заносятся в ее базу данных. Из трехмерной модели реализуются 2D-чертежи. Для этого используется информация о координатах из БД трехмерноймодели, а также из центральной БД об элементах, не влияющих на компоновку основного оборудования, которые не были учтены в трехмерной модели. Этим элементам также присваивается код KKS, который заносится в базу данных 2D-чертежей.
Таким образом, исходя из опыта, приобретенного при StartUp, можно сделать вывод, что успешное внедрение технологии комплексного проектирования на начальном этапе развития компании основано на трех китах:
Для компании ООО «АЭС-Буран» залогом успешного внедрения, апробации, корректировки и дальнейшей эксплуатации технологии SPE в условияхограниченного времени (2 года) и ресурсов (проектная группа и группа ИТ-поддержки — 30 человек) стали:
Таким образом, правильная комбинация и распределение весовых коэффициентов по данным направлениям определяются целевыми функциями развития проектного офиса. Совершенно очевидно, что подобный проект не является уникальным, однако ключевыми моментами, обеспечившими эффективный StartUp, стали:
При этом, как уже говорилось, эта работа выполнялась как самостоятельно, так и с привлечением внешнего интегратора — компании «Бюро ESG» — опытного и давнего партнера Intergraph;